首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3131篇
  免费   137篇
  国内免费   213篇
林业   99篇
农学   220篇
基础科学   45篇
  1296篇
综合类   1203篇
农作物   195篇
水产渔业   48篇
畜牧兽医   181篇
园艺   166篇
植物保护   28篇
  2024年   10篇
  2023年   39篇
  2022年   59篇
  2021年   89篇
  2020年   69篇
  2019年   82篇
  2018年   48篇
  2017年   119篇
  2016年   120篇
  2015年   140篇
  2014年   151篇
  2013年   187篇
  2012年   188篇
  2011年   226篇
  2010年   203篇
  2009年   251篇
  2008年   249篇
  2007年   257篇
  2006年   202篇
  2005年   193篇
  2004年   109篇
  2003年   90篇
  2002年   48篇
  2001年   42篇
  2000年   44篇
  1999年   31篇
  1998年   29篇
  1997年   33篇
  1996年   38篇
  1995年   18篇
  1994年   18篇
  1993年   23篇
  1992年   18篇
  1991年   16篇
  1990年   11篇
  1989年   9篇
  1988年   11篇
  1987年   9篇
  1986年   1篇
  1985年   1篇
排序方式: 共有3481条查询结果,搜索用时 31 毫秒
1.
为了给内蒙古高原紫花苜蓿(Medicago sativa L.)测土施氮奠定科学基础,本研究采用“零散实验数据整合法”和“养分平衡-地力差减法”新应用公式,开展了该自然区域紫花苜蓿土壤氮素丰缺指标和推荐施氮量研究。结果表明:内蒙古高原生长第1年紫花苜蓿土壤碱解氮第1~6级丰缺指标为≥48,20~48,8~20,4~8,2~4和<2 mg·kg-1,土壤全氮第1~5级丰缺指标为≥1.4,0.8~1.4,0.4~0.8,0.2~0.4和<0.2 g·kg-1,土壤有机质第1~6级丰缺指标为≥17,10~17,6~10,3~6,2~3和<2 g·kg-1。当紫花苜蓿目标产量9~18 t·hm-2、氮肥利用率40%时,内蒙古高原紫花苜蓿第1~6级土壤推荐施氮量分别为0,68~135,135~270,203~405,270~540和338~675 kg·hm-2。  相似文献   
2.
采用沉淀法制备紫杉醇白蛋白微粒,采用高效液相色谱法(HPLC)测定紫杉醇质量浓度,以二氯甲烷为有机相,采用萃取法分离白蛋白微粒与游离药物,测定其包封率。结果表明:紫杉醇在10~100 mg·L-1范围内线性良好,平均回收率可达到97.6%~101.0%;有机溶剂萃取法测定紫杉醇白蛋白微粒包封率的平均回收率,达94.80%~101.67%。这种方法测定紫杉醇白蛋白微粒回收率准确可靠,适用于沉淀法制备的白蛋白微粒的包封率测定。  相似文献   
3.
研究不同有机物浸提液对铁皮石斛试管苗生长的影响。在相同的培养条件下,以8种含有不同有机物的培养基培养试管苗,60d后对试管苗的各种性状进行记录统计,并与对照(没加有机物提取液)进行比较分析。结果不同的有机物浸提液对试管苗的影响效果不一样。壮苗以加入白萝卜提取液、CH和CM为佳,生根以加入香蕉提取液为佳,要提高繁殖系数以不加有机物为佳。  相似文献   
4.
碧峰峡森林土壤性状研究   总被引:1,自引:0,他引:1  
碧峰峡不仅是旅游景点,还是多学科研究的天然“实验室”,地处雅安亚热带区,原始森林植被保护完好,土壤垂直分布明显,地质现象复杂,也是大熊猫、金丝猴出没之地。经研究结果:土壤呈酸性,自然肥力高.经相关分析结果:土壤有机质含量和CEC等有关理化特性的相关性,较物理性粘粒与CEC间更加显著。  相似文献   
5.
6.
7.
Composting and thermal drying are amongst the most commonly used post-digestion processes for allowing sanitation and biological stabilization of sewage sludge from municipal treatment plants, and making it suitable as soil conditioner for use in agriculture. To assess the impact of sludge-derived materials on soil microbial properties, fresh (LAF), composted (LAC) and thermally dried (LAT) sludge fractions, each resulting from a different post-treatment process of a same aerobically digested sewage sludge, were added at 1% (w/w) application rate on two contrasting (a loam and a loamy sand) soils and incubated under laboratory conditions for 28 days. Soil respiration, microbial ATP content, hydrolytic activities and arginine ammonification rate were monitored throughout the incubation period. Results showed that soil biochemical variables, including the metabolic quotient (qCO2), were markedly stimulated after sludge application, and the magnitude of this stimulatory effect was dependent on sludge type (precisely LAT > LAF > LAC), but not on soil type. This effect was related to the content of stable organic matter, which was lower in LAT. Genetic fingerprinting by PCR–DGGE revealed that compositional shifts of soil bacterial and, at greater extent, actinobacterial communities were responsive to the amendment with a differing sludge fraction. The observed time-dependent changes in the DGGE profiles of amended soils reflected the microbial turnover dependent on the sludge nutrient input, whereas no indications of adverse effects of sludge-borne contaminants were noted. Our findings indicate that composting rather thermal drying can represent a more appropriate post-digestion process to make sewage sludge suitable for use as soil conditioner in agriculture.  相似文献   
8.
Benefits of organic farming on soil fauna have been widely observed and this has led to consider organic farming as a potential approach to reduce the environmental impact of conventional agriculture. However, there is still little evidence from field conditions about direct benefits of organic agriculture on soil ecosystem functioning. Hence, the aims of this study were to compare the effect of organic farming versus conventional farming on litter decomposition and to study how this process is affected by soil meso- and macrofauna abundances. Systems studied were: (1) organic farming with conventional tillage (ORG), (2) conventional farming with conventional tillage (CT), (3) conventional farming under no-tillage (NT), and (4) natural grassland as control system (GR). Decomposition was determined under field conditions by measuring weight loss in litterbags. Soil meso- and macrofauna contribution on decomposition was evaluated both by different mesh sizes and by assessing their abundances in the soil. Litter decomposition was always significantly higher after 9 and 12 months in ORG than in CT and NT (from 2 to 5 times in average), regardless decomposer community composition and litter type. Besides, mesofauna, macrofauna and earthworm abundances were significantly higher in ORG than in NT and CT (from 1.6 to 3.8, 1.7 to 2.3 and 16 to 25 times in average, respectively for each group). These results are especially relevant firstly because the positive effect of ORG in a key soil process has been proved under field conditions, being the first direct evidence that organic farming enhances the decomposition process. And secondly because the extensive organic system analyzed here did not include several practices which have been recognized as particularly positive for soil biota (e.g. manure use, low tillage intensity and high crop diversity). So, this research suggests that even when those practices are not applied, the non-use of agrochemicals is enough to produce positive changes in soil fauna and so in decomposition dynamics. Therefore, the adoption of organic system in an extensive way can also be suggested to farmers in order to improve ecosystem functioning and consequently to achieve better soil conditions for crop production.  相似文献   
9.
通过合理把握有机化学课程知识体系和教学层次,将知识体系模块化,内容层次多元化,同时把课程设计与各个专业培养目标有机融合,建设有机化学平台课程并进一步完善评价制度,从而实现平台课程服务人才培养的目标.  相似文献   
10.
A range of agricultural practices influence soil microbial communities, such as tillage and organic C inputs, however such effects are largely unknown at the initial stage of soil formation. Using an eight-year field experiment established on exposed parent material (PM) of a Mollisol, our objectives were to: (1) to determine the effects of field management and soil depth on soil microbial community structure; (2) to elucidate shifts in microbial community structure in relation to PM, compared to an arable Mollisol (MO) without organic amendment; and (3) to identify the controlling factors of such changes in microbial community structure. The treatments included two no-tilled soils supporting perennial crops, and four tilled soils under the same cropping system, with or without chemical fertilization and crop residue amendment. Principal component (PC) analysis of phospholipid fatty acid (PLFA) profiles demonstrated that microbial community structures were affected by tillage and/or organic and inorganic inputs via PC1 and by land use and/or soil depth via PC2. All the field treatments were separated by PM into two groups via PC1, the tilled and the no-tilled soils, with the tilled soils more developed towards MO. The tilled soils were separated with respect to MO via PC1 associated with the differences in mineral fertilization and the quality of organic amendments, with the soils without organic amendment being more similar to MO. The separations via PC1 were principally driven by bacteria and associated with soil pH and soil C, N and P. The separations via PC2 were driven by fungi, actinomycetes and Gram (−) bacteria, and associated with soil bulk density. The separations via both PC1 and PC2 were associated with soil aggregate stability and exchangeable K, indicating the effects of weathering and soil aggregation. The results suggest that in spite of the importance of mineral fertilization and organic amendments, tillage and land-use type play a significant role in determining the nature of the development of associated soil microbial community structures at the initial stages of soil formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号